Strong convergence theorems by hybrid methods for the split common null point problem in Banach spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the strong convergence theorems by the hybrid method for a family of mappings in uniformly convex Banach spaces

Some algorithms for nding common xed point of a family of mappings isconstructed. Indeed, let C be a nonempty closed convex subset of a uniformlyconvex Banach space X whose norm is Gateaux dierentiable and let {Tn} bea family of self-mappings on C such that the set of all common fixed pointsof {Tn} is nonempty. We construct a sequence {xn} generated by the hybridmethod and also we give the cond...

متن کامل

Iterative methods of strong convergence theorems for the split feasibility problem in Hilbert spaces

In this paper, we propose several new iterative algorithms to solve the split feasibility problem in the Hilbert spaces. By virtue of new analytical techniques, we prove that the iterative sequence generated by these iterative procedures converges to the solution of the split feasibility problem which is the best close to a given point. In particular, the minimum-norm solution can be found via ...

متن کامل

Weak and Strong Convergence of Algorithms for the Split Common Null Point Problem

We introduce and study the Split Common Null Point Problem (SCNPP) for set-valued maximal monotone mappings in Hilbert space. This problem generalizes our Split Variational Inequality Problem (SVIP) [Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numerical Algorithms, accepted for publication, DOI 10.1007/s11075-011-9490-5]. The SCNPP with only two s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fixed Point Theory and Applications

سال: 2015

ISSN: 1687-1812

DOI: 10.1186/s13663-015-0324-3